
User Guide
v1.1

Save System for Realistic FPS Prefab

Copyright © Pixel Crushers. All rights reserved.

Realistic FPS Prefab © Azuline Studios.

Contents
Chapter 1: Welcome to Save System for RFPSP...4

How to Get Help... 4
Setup & Demo.. 4

Chapter 2: Configuration... 6
FPS Player... 6
AI... 7
Other Savers: Position, Active, Enabled, Animator..8
Pickups and Destructibles..8
Saver Keys... 8
Spawned (Dropped) Objects..9
Scene Portals... 11
Checkpoint Saves..12
Save System.. 13
Auto Save Load... 14
Save System Events..15
Scene Transition Manager...15
How To Respawn With Saved Data...16

Chapter 3: Scripting..17
Save System Methods...18

Chapter 4: Serializers...18
Chapter 5: Third Party Support...19

Compass Navigator Pro Integration...19
PlayMaker Integration..19
Tactical Shooter AI Integration...19

Chapter 1: Welcome to Save System for RFPSP

Thanks for using the Save System for RFPSP. This asset adds save support to Azuline Studios’ Realistic
FPS Prefab. It’s designed to require minimal changes to Realistic FPS Prefab’s source code.

This asset requires Unity 5.3.6+ and Azuline Studios’ Realistic FPS Prefab 1.24+.

How to Get Help

We’re here to help! If you get stuck, have questions, or want to request a feature, please email us:

Email: support@pixelcrushers.com

Setup & Demo

To use the Save System for RFPSP, you’ll need to edit two Realistic FPS Prefab script files. We’ll walk
you through the simple process here. You won’t have to touch any other scripts to use the Save System.

First, edit the script RFPSP ► Scripts ► HUD ► MainMenu.cs. On line 322, insert the text highlighted
below:

 if (GUI.Button(new Rect(buttonH + buttonWidthAmt + buttonSpacing, buttonV + ((buttonHeightAmt +
buttonSpacing) * 4), buttonWidthAmt, buttonHeightAmt), "Exit Game", mainButtonSyle)){
 PlayerPrefs.SetInt("Game Type", 0);
 PlayButtonFx(buttonClickFx, buttonFxVol);
 Application.Quit();
 #if UNITY_EDITOR
 UnityEditor.EditorApplication.isPlaying = false;
 #endif
 }

 // START INSERTED TEXT...
 if (GUI.Button(new Rect(buttonH, buttonV + ((buttonHeightAmt + buttonSpacing) * 5),
buttonWidthAmt, buttonHeightAmt), "Save Game", mainButtonSyle))
 {
 PixelCrushers.SaveSystem.SaveToSlot(1);
 resumePress = true;
 }

 GUI.enabled = PixelCrushers.SaveSystem.HasSavedGameInSlot(1);
 if (GUI.Button(new Rect(buttonH + buttonWidthAmt + buttonSpacing, buttonV + ((buttonHeightAmt +
buttonSpacing) * 5), buttonWidthAmt, buttonHeightAmt), "Load Game", mainButtonSyle))
 {
 PixelCrushers.SaveSystem.LoadFromSlot(1);
 this.enabled = false;
 }
 GUI.enabled = true;
 // ...END INSERTED TEXT

 }

 //play button click sound effects
 private void PlayButtonFx(AudioClip clip, float vol){

For easy pasting, a copy of this text is in the file Scripts ► _PASTE_INTO_MAINMENU.txt.

Chapter 1: Welcome to Save System for RFPSP 4

mailto:support@pixelcrushers.com

Only required for Realistic FPS Prefab versions prior to 1.2x:

1. Select the menu item Edit → Project Settings → Player.
2. In the Inspector, set Other Settings → Scripting Define Symbols to RFPS_1_2. If this field already
contains symbols, add RFPS_1_2 separated by a semicolon.

Only required for Realistic FPS Prefab version 1.24 (not 1.25+):

Next, edit the script RFPSP ► Scripts ► AI ► CharacterDamage.cs. On line 7, insert one line of text:

 public class CharacterDamage : MonoBehaviour {
 public UnityEngine.Events.UnityEvent onDie; // ADD THIS LINE!

Then on line 182, add one more line of text:

 //Kill NPC
 if (hitPoints <= 0.0f){
 onDie.Invoke(); // ADD THIS LINE!
 AIComponent.vocalFx.Stop();

That’s it! You’ll now be able to use the Save System without having to touch any other script files.

Demo

To play the demo, add these scenes to your build settings:

• Pixel Crushers ► Save System for RFPSP ► Demo > DemoScene1
• Pixel Crushers ► Save System for RFPSP ► Demo > DemoScene2

Then play DemoScene1. You can do the following:

• Press Escape to access the RFPSP Main Menu, which will have new buttons to save and load
your game.

• Use the portals to move between DemoScene1 and DemoScene2. The portals are to the left
when you start the scene, just behind the shack.

• Next to the portal in DemoScene1, there’s a Save Checkpoint trigger. If you enter this, it will
automatically save your game.

Only a few enemies have been configured to remember in saved games when they’ve been killed: the
“SoldierBadNPCColliders” in front of the house near the beginning of DemoScene1, and two of the robots
further down the trail.

Only one destructible has been configured for saved games: the “ExplosiveBarrel” next to the house.

Similarly, only a few pickups have been configured to remember in saved games when they’ve been
picked up, such as the “Sniper_Pickup” leaning against the fence by the house near the beginning of
DemoScene1.

The rest of this manual describes how to set up your scenes and objects for saved games.

Chapter 1: Welcome to Save System for RFPSP 5

Chapter 2: Configuration
Follow the steps in this chapter to set up your project with the Save System for RFPSP.

In each scene, make these changes:

FPS Player

Inspect FPS Main > FPS Player. Add an FPS Player Saver component.

This will save the player’s stats, inventory, and position.

Data in saved games are stored under keys. You can specify a value in the Key field, or just leave it blank
to default to the GameObject’s name (FPS Player).

Make sure Save Across Scene Changes is ticked.

To log debug information to the Console, tick Debug.

You can apply the Save System for RFPSP to prefabs as well as scene GameObjects.

Chapter 2: Configuration 6

AI

To configure AI NPCs to remember in saved games when they’ve been killed, make sure you’ve edited
the script RFPSP / Scripts / AI / CharacterDamage.cs as described above on page 5 of this manual. This
will add an OnDie() event in the Inspector.

Add an AI Saver component. Set the OnDie() event to AISaver.OnDestroy. If you have more than one AI
with the same name, assign a unique Key to each.

Optionally, inspect the Character Damage component, and assign a corpse prefab to the Dead
Replacement field. (If you’ve enabled the Remove Body component, don’t assign a corpse prefab.)

Chapter 2: Configuration 7

Other Savers: Position, Active, Enabled, Animator

To save a GameObject’s position, add a Position Saver. To save its animator state, add an Animator
Saver. To save a GameObject’s active/inactive state add an Active Saver. To save a component’s
enabled state, add an Enabled Saver. In both cases, put the saver on a GameObject that’s guaranteed
to be active. For RFPSP pickups, use Destructible Savers instead as described below.

Pickups and Destructibles

To remember the state of a pickup or destructible in saved games and across scene changes, add a
Destructible Saver.

If you’re configuring multiple GameObjects with the same name, assign a unique Key to each.

Tick Save Across Scene Changes to remember the change when leaving the scene and returning to it.
This will increase the size of the saved game file.

Saver Keys

Every saver component needs a unique key. If the Key field is blank, it will use the GameObject name
(e.g., “Orc”). To automatically assign unique keys to every saver in a scene, select menu item Tools >
Pixel Crushers > Common > Save System > Assign Unique Keys….

Chapter 2: Configuration 8

Spawned (Dropped) Objects

This section describes how to configure dropped objects to be saved in saved games.

Dropped objects are managed by a component called Spawned Object Manager. Although it has the
word “Spawned” in the name, it has nothing to do with RFPSP's NPC spawn system. “Spawned” in this
case means RFPSP has dropped a pickup object into the scene, typically when the player drops a
weapon. The Spawned Object Manager keeps track of these dropped pickup objects. When you load a
game, it re-instantiates the pickup object there.

This is an overview of the configuration process:

1. Create a copy of a pickup prefab, and add a Spawned Object component.
2. Add a Spawned Object Manager to the scene, and assign the prefab to it.
3. Configure the player to drop instances of this prefab instead of the regular RFPSP pickup.

Create Spawned Object Prefab

Find the prefab (such as Pickup_Sniper), and make a copy, for example named Pickup_Sniper_Spawned.
Add a Spawned Object component to it. Repeat for all items that the player can drop. The Prefabs folder
contains preconfigured prefabs for the standard RFPSP pickups.

Create Spawned Object Manager

Drag the Spawned Object Manager prefab from the Prefabs folder into the scene, or create an empty
GameObject and add an FPS Spawned Object Manager component. Each scene should have its own
Spawned Object Manager.

Chapter 2: Configuration 9

Add all Spawned Object prefabs that the player can drop to the Spawned Object Prefabs list. If a prefab
is missing from the list, the Spawned Object Manager will not be able to re-spawn it when loading games
or returning to the scene. The Spawned Object Manager prefab’s Spawned Object Prefabs list contains
all of the standard RFPSP pickups already.

Arrows

If you want to save the state of arrows that have been shot into the scene so players can retrieve them,
add these two lines to the beginning of the Update() method in ArrowObject.cs:

void Update () {
 if (FPSPlayerComponent == null) return; // ADD THIS LINE (1/2)
 if (myMeshRenderer == null) InitializeProjectile(); // ADD THIS LINE (2/2)

Configure Player’s Spawned Object Drops

Inspect each of the player’s weapons (located under FPS Weapons). Assign the spawned object prefab
to the Weapon Drop Obj field as shown below, replacing the original version of the prefab.

Chapter 2: Configuration 10

Scene Portals

To set up a transition to another scene, drag the Scene Portal prefab from the Prefabs folder into your
scene, or add a GameObject with a trigger collider and add a Scene Portal component.

Set Destination Scene Name to the scene that this portal leads to. Make sure the destination scene is in
your project’s build settings.

In the destination scene, create an empty GameObject where the player should appear. This is called a
spawnpoint. In the original scene’s Scene Portal component,set the Spawnpoint Name In Destination
Scene field to the name of that spawnpoint.

Make sure your spawnpoint is far enough away from any scene portals in the destination scene so it won’t
immediately trigger another scene change.

If you don’t want to use trigger colliders, you can manually call the ScenePortal.UsePortal method.

Chapter 2: Configuration 11

Checkpoint Saves

To set up a checkpoint save trigger, drag the Checkpoint Save prefab from the Prefabs folder into the
scene, or add a GameObject with a trigger collider and add Trigger Event and Save System Methods
components.

If you added the components manually, configure the Trigger Event’s On Trigger Enter event to call
SaveSystemMethods.SaveSlot, and specify a slot number. Optionally, disable the trigger after the
checkpoint save by adding another event handler for GameObject.SetActive as shown above.

Chapter 2: Configuration 12

Save System

This step is optional. The Save System will automatically create a Save System GameObject at runtime.
However, you can manually add one if you want to customize it. To add it, drag the Save System prefab
from the Prefabs folder into your scene, or create a GameObject and add a Save System component.
This GameObject acts as a persistent singleton, meaning it survives scene changes and typically there is
only one instance.

The Save System relies on two components:

• Data Serializer: Converts binary saved game data into a saveable format.
• Saved Game Data Storer: Writes serialized data to persistent storage such as PlayerPrefs or

local disk files.

By default, the Save System uses Json Data Serializer. If you want to use a different serializer, you can
add a Binary Data Serializer or your own implementation of DataSerializer to the Save System.

By default, the Save System uses PlayerPrefs Saved Game Data Storer to save games to PlayerPrefs.
The Save System also ships with a Disk Saved Game Data Storer that saves games to encrypted local
disk files; to use it, remove the PlayerPrefs Saved Game Data Storer (if present) and add Disk Saved
Game Data Storer. If you want to store games a different way, you can add your own implementation of
the SavedGameDataStorer class.

If you have a menu system, to load and save games you can assign the methods
SaveSystem.SaveGameToSlot and SaveSystem.LoadGameFromSlot to your UI buttons’ OnClick()
events. Or in scripts you can use the equivalent static methods SaveSystem.SaveToSlot and
SaveSystem.LoadFromSlot described in the next chapter.

Similarly, to change scenes without using the Scene Portal component, you can call
SaveSystem.LoadScene in scripts or assign SaveSystem.LoadScene to your UI buttons’ OnClick()
events. Since the Save System GameObject might not be in all of your scenes, you can add a Save
System Methods component and direct OnClick() to its LoadScene method instead.

Chapter 2: Configuration 13

Auto Save Load

Mobile games typically auto-save when the player closes the game and auto-load when the player
resumes the game. To add this behavior to your game, add an Auto Save Load component to the Save
System:

Tick Load On Start to load the saved game (if it exists) on start, and Save On Quit to save the game
when quitting the app.

Tick Save On Pause to also save the game when the player pauses/minimizes it. This way the game will
be saved correctly if the player pauses the app and then kills it, instead of exiting it normally in the app
itself.

Tick Save On Lose Focus to also save the game when the app loses focus.

If your game uses a splash screen, you may not want to enable Auto Save Load until the first scene
actually loads. Otherwise, if the player minimizes the app during the splash screen, the Auto Save Load
component could save the game in its initial state, before it has loaded its previously-saved data. To set
this up, disable Auto Save Load, and use a Timed Event component to enable it on Start:

Chapter 2: Configuration 14

Save System Events

The Save System Events components allows you to hook up events in the inspector.

Scene Transition Manager

To play outro and intro animations, and/or show a loading scene while loading the next actual scene, add
a Standard Scene Transition Manager to your Save System:

If Pause During Transition is ticked, make sure your Animator(s) are set to Unscaled Time.

If a Scene Transition Manager is present, the Save System will:

1. Set the Leave Scene Transition’s animator trigger (if specified).
2. Load the loading scene (if specified).
3. Asynchronously load the next actual scene.
4. After the actual scene has been loaded, set the Enter Scene Transition’s trigger (if specified).

Chapter 2: Configuration 15

Chapter 2: Configuration 16

How To Respawn With Saved Data

If you want the player to respawn with their saved inventory after dying, you will need to edit RFPSP's
FPSPlayer.cs script in two places.

Edit #1: Replace the last "}" in the Start() method with this:

 if (!string.IsNullOrEmpty(savedDataToLoadOnStart)) //[PixelCrushers]
 {
 Debug.Log("Applying saved inventory.");
 GetComponent<PixelCrushers.SaveSystemForRFPS.FPSPlayerSaver>().
 ApplyInventory(savedDataToLoadOnStart);
 savedDataToLoadOnStart = string.Empty;
 }
}
public static string savedDataToLoadOnStart = string.Empty; //[PixelCrushers]

Edit #2: Add this line (marked with [PixelCrushers]) at line ~1269:

//Call Die function if player's hitpoints have been depleted
if (hitPoints < 1.0f){
 savedDataToLoadOnStart = GetComponent<PixelCrushers.SaveSystemForRFPS.FPSPlayerSaver>().
 RecordData(); //[PixelCrushers]
 SendMessage("Die");//use SendMessage() to allow other script components on this object to detect player death
}

Chapter 2: Configuration 17

Chapter 3: Scripting
The Save System has a very simple scripting interface.

SaveSystem class

These methods are available though SaveSystem:

public static void LoadFromSlot(int slotNumber)
Loads a previously-saved game from a slot.

public static void SaveToSlot(int slotNumber)
Saves the current game to a slot.

public static void DeleteSavedGameInSlot(int slotNumber)
Deletes the data in a saved game slot.

public static void LoadScene(string sceneNameAndSpawnpoint)
Loads a scene, optionally positioning the player at a specified spawnpoint. The parameter is a
string containing the name of the scene to load, optionally followed by "@spawnpoint" where
"spawnpoint" is the name of a GameObject in that scene. The player will be spawned at that
GameObject's position. This method implicitly calls RecordSavedGameData() before leaving the
current scene and calls ApplySavedGameData() after loading the new scene.

public static SavedGameData RecordSavedGameData()
Returns a SavedGameData object containing the saved data from the current game.

public static void ApplySavedGameData(SavedGameData savedGameData)
Applies a SavedGameData object to the current game.

public static void LoadGame(SavedGameData savedGameData)
Loads a game previously saved in a SavedGameData object.

public static void LoadScene(string sceneName, string spawnpointName = null)
Loads a scene, optionally positioning the player at a spawnpoint in the new scene.

public static void RestartGame(string startingSceneName)
Clears the current save game data and restart the game at the specified scene.

Saver class

Saver is the base class for any components that record data for saved games. You can create subclasses
to extend the data that the Save System saves. A starter template with detailed comments is provided in
Plugins ► Pixel Crushers ► Common ► Templates ► SaverTemplate.cs .

DataSerializer class

DataSerializer is the base class for data serializers that the Save System can use to serialize and
deserialize saved game data. The default subclass is JsonDataSerializer.

Chapter 3: Scripting 18

SavedGameDataStorer class

SavedGameDataStorer is the base class for data storers. A data storer writes and reads a
SavedGameData object to and from some storage location, such as PlayerPrefs or a disk file. The default
subclass is PlayerPrefsSavedGameDataStorer, but the Save System also includes
DiskSavedGameDataStorer which saves to encrypted disk files on supported platforms (e.g., desktop).

Events

You can register listeners for these C# events:

public static event SceneLoadedDelegate sceneLoaded = delegate { };
public static event System.Action saveStarted = delegate { };
public static event System.Action saveEnded = delegate { };
public static event System.Action loadStarted = delegate { };
public static event System.Action loadEnded = delegate { };

Save System Methods

To access Save System methods without scripting, such as in a UI Button’s OnClick() event, add a Save
System Methods component to the scene. This component exposes the methods of the SaveSystem
class to the inspector.

Chapter 4: Serializers
The default serializer is JSON Data Serializer. However, you can remove this and add a Binary Data
Serializer if you want to serialize to binary format. If your Savers use types that are not serializable, you
will need to make a subclass of Binary Data Serializer and add serialization surrogates. For examples,
see the scripts BinaryDataSerializer.cs, Vector3SerializationSurrogate.cs, and
QuaternionSerializationSurrogate.cs.

Chapter 4: Serializers 19

Chapter 5: Third Party Support
Integration support for third party assets is included the unitypackages listed below. Documentation is
included in each third party support package.

Compass Navigator Pro Integration

Compass Navigator Pro © Kronnect

Plugins ► Pixel Crushers ► Common ► Third Party Support ► Compass Navigator Pro Support

PlayMaker Integration

PlayMaker © Hutong Games

Plugins ► Pixel Crushers ► Common ► Third Party Support ► PlayMaker Support

Tactical Shooter AI Integration

Tactical Shooter AI © Squared 55

Plugins ► Pixel Crushers ► Common ► Third Party Support ► Tactical Shooter AI Support

Chapter 5: Third Party Support 20

	Chapter 1: Welcome to Save System for RFPSP
	How to Get Help
	Setup & Demo
	Demo

	Chapter 2: Configuration
	FPS Player
	AI
	Other Savers: Position, Active, Enabled, Animator
	Pickups and Destructibles
	Saver Keys
	Spawned (Dropped) Objects
	Create Spawned Object Prefab
	Create Spawned Object Manager
	Arrows
	Configure Player’s Spawned Object Drops

	Scene Portals
	Checkpoint Saves
	Save System
	Auto Save Load
	Save System Events
	Scene Transition Manager
	How To Respawn With Saved Data

	Chapter 3: Scripting
	SaveSystem class
	Saver class
	DataSerializer class
	SavedGameDataStorer class
	Events
	Save System Methods

	Chapter 4: Serializers
	Chapter 5: Third Party Support
	Compass Navigator Pro Integration
	PlayMaker Integration
	Tactical Shooter AI Integration

